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Abstract

A weakly complete sequence is an increasing sequence of positive
integers with the property that every sufficiently large integer can be
written as a sum of distinct terms of the sequence. In this article, we
give a partial proof of a conjecture of Paul giving a formula for weakly
complete sequences formed using a natural procedure.

1 Introduction.

The purpose of this article is to prove a special case of a conjecture of Paul
[10] about weakly complete sequences formed through the use of the greedy
algorithm. Briefly, an increasing sequence of positive integers is weakly com-
plete if every sufficiently large integer can be written as a sum of distinct
terms of the sequence. (We use the terminology of [9]. Other authors refer
to such a sequence simply as complete.) In this work, we are interested in
sequences with two given initial terms a1 and a2, and such that all integers
greater than a2 are sums of terms of the sequence. A natural way to pro-
duce such a sequence is to use the greedy algorithm. That is, once the terms
a1, . . . , ak are known, we define ak+1 to be the smallest number greater than
ak which can not be written as a sum of terms already in the sequence. For
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example, if we set a1 = 5 and a2 = 8, then we obtain the sequence

5, 8, 9, 10, 11, 12, 48, 49, 51, 52, 248, 249, 251, 252,

1248, 1249, 1251, 1252, 6248, 6249, 6251, 6252, . . . .

Similarly, if we start with a1 = 3 and a2 = 7, then we obtain the sequence

3, 7, 8, 9, 13, 14, 48, 49, 50, 195, 196, 197, 783, 784, 785,

3135, 3136, 3137, 12543, 12544, 12545, . . . .

One can see that shortly after the initial terms, the terms of these se-
quences appear to organize themselves very nicely. In our first example,
the four terms after 12 are 10 · 51 + {−2,−1, 1, 2}, the next four terms are
10 · 52 + {−2,−1, 1, 2}, the next four are 10 · 53 + {−2,−1, 1, 2}, and so
on. (Here, as is usual, if a is a real number and S is a set then we define
a + S = {a + s : s ∈ S}. As a general program of study, we are inter-
ested in understanding the structure of sequences defined in this manner,
and to know whether they always display the types of patterns indicated in
the above examples.

In this article, we describe exactly the sequences produced when the initial
terms satisfy a mild condition. In particular, we prove the following theorem.

Theorem. Suppose that a weakly complete sequence is defined as above and
has initial terms a1 = n and a2 = n+d, with 2 ≤ d ≤ n−8. Then the elements
of the sequence are exactly the elements in the set I∪J∪

⋃∞
i=1(an

i+S), where
I = {n}, J = {s ∈ Z : n+ d ≤ s ≤ 2n+ d− 1}, and we have

a =
3n2 + n(2d− 3)− 4d+ 2

2(n− 1)
.

To define the set S, let

b =
n2 − n− 2d+ 2

2(n− 1)
,

and then let
S = {−b+ j : 0 ≤ j ≤ n− 1, j 6= d− 1}.
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Note that we can also write J = (an0 + S) ∪ {an0 + (d− 1)}.

This formula was first conjectured in [10, Conjecture B], although there
it is conjectured to hold for all 1 ≤ d ≤ n− 1. In that paper, the d = 1 case
of this theorem was proved without the d ≤ n− 8 restriction. Additionally,
the article [10] gives formulas for the sequences obtained when n = 1 and
d ≥ 3, and also when n ≥ 2 and d = n.

We note here that a fair amount of research has been done on weakly
complete sequences, such as that found in [2, 3, 5], and [8]. Surveys of this
work can be found in [6, Section 6] and [12, Section 4.3]. Similarly, articles
such as [4] and [13] treat the related situation where it is only asked that
the set of sums of elements of the sequence contain an infinite arithmetic
progression. However, the focus in all of these articles is to start with some
property of a sequence (usually that its counting function is large), and show
that all sequences with this property must be weakly complete. This differs
from our focus of starting with a method for producing weakly complete se-
quences and studying the structure of the sequences produced. The work
closest in spirit to ours appears to be that on MacMahon’s prime numbers
of measurement (see [1, 7, 11]). However, in this case, MacMahon’s con-
struction yields only one sequence (although this can easily be generalized)
and, more importantly, numbers are required to be represented as a sum of
consecutive terms of the sequence.

Our strategy for proving this theorem follows that used in [10]. For con-
venience, we write S0 = J and for i ≥ 1, we write Si for the set ani + S. We
first show that the initial terms of the sequence are given by the elements
of I, S0, and S1. After this, we induct on i, assuming that the elements of
Pi = I ∪S0∪ · · ·∪Si are known to be the initial terms, and showing that the
next terms are the elements of Si+1. To do this, we essentially consider the
sets of numbers which can be represented using elements of Pi−1 and exactly
m elements of Si (1 ≤ m ≤ n− 1). We will show that these sets are intervals
which typically either overlap or contain consecutive sets of integers (so that
there are no “gaps” between them). With a little extra work, this will show
that all numbers less than the smallest element of Si+1 can be written as
sums of elements of Pi. After this, it will be straightforward to show that
the elements of Si+1 cannot be written as sums of previous terms, and are
hence the next terms of the sequence.
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We end this introduction by giving some of the notation and terminology
used in the proof of the theorem. If S is a set, then we define R(S) to be the
set of sums of distinct elements of S, and Rm(S) to be the set of all sums
of (exactly) m distinct elements of S. We typically use “integer interval”
notation, so that [a, b] = {x ∈ Z : a ≤ x ≤ b}. For example, we will write
S0 = J = [n + d, 2n + d− 1]. We say that two intervals [a, b] and [c, d] with
a ≤ b, c and b, c ≤ d are contiguous if [a, b] ∪ [c, d] = [a, d]. Note that this
occurs if and only if c ≤ b + 1. Also, it will be convenient to define the
numbers si,j = ani − b + j. Thus we have S0 = {s0,j : 0 ≤ j ≤ n − 1} and
Si = {si,j : 0 ≤ j ≤ n− 1, j 6= d− 1}. Finally, if X and Y are sets, then we
define as usual

X + Y = {x+ y : x ∈ X, y ∈ Y }.

2 Preliminary Lemmata

In this section, we prove two lemmata which we need in the proof of the
theorem. Our first lemma yields information about the structure of the sets
Rm(S) when S is “almost” an interval.

Lemma 1. Suppose that s, b, n are integers such that s < s+ b < s+ n− 1,
and let S = [s, s+ n− 1] \ {s+ b}. If 1 ≤ m ≤ n− 1, then the set Rm(S) is
an interval except for m = 1, b, n− 1− b, n− 2. For these exceptional values
of m, the set Rm(S) is an interval with exactly one element removed, unless
n = 2b + 1 and b ≥ 2, in which case the set Rb(S) is an interval with two
elements removed.

Proof. We may assume without loss of generality that s = 0, and do so
throughout the proof. Thus we have

S = [0, n] \ {b}.

If m = 1, then the sumset is simply S, which is an interval with the element
b deleted. If m = n−2, then we are interested in sums of all but one element
of S. We may think of these as the numbers obtained by subtracting one
element of S from the sum of all the elements. Thus in the same way as in
the m = 1 case, we see that Rn−2(S) is the interval[

(n− 2)(n− 1)

2
− b, (n− 1)(n)

2
− b
]
,
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except that the element (n−1)(n)
2
− 2b is missing. Also, the set Rn−1(S) is

obviously an “interval” consisting of a single number, the sum of all the ele-
ments of S. Hence the lemma is true for these values of m.

Now suppose that 2 ≤ m ≤ n− 3. The smallest element rsmall of Rm(S)
is obtained by summing the m smallest elements of S, and the largest ele-
ment rlarge of Rm(S) is obtained by summing the m largest elements of S.
If x is a number between these extremes, then we will try to represent it as
x = a1 + a2 + · · ·+ am, where ai ∈ S for each i, and a1 < a2 < · · · < am.

We begin by setting the ai equal to the m smallest elements of S, and note
that none of these initial values is equal to b. Then we represent successively
larger numbers in the following manner. First we keep a1, . . . , am−1 constant
and increase am until it equals n−1. Then we hold a1, . . . , am−2, am constant
and increase am−1 until it equals the second-largest element of S. (This is
n − 2 unless we have b = n − 2, in which case this number is n − 3.) We
continue in this manner, successively increasing am−2, am−3, . . . , a1 until the
values of the ai are the m largest elements of S. Note that as we increase a
term ai, neither the initial nor final value of ai is allowed to equal b, although
we may have ai = b between these extremes.

This procedure shows that all numbers x ∈ [rsmall, rlarge] are elements of
Rm([0, n−1]). If none of the ai in the representation of x are equal to b, then
we have shown that x ∈ Rm(S). However, the procedure fails to show that
x ∈ Rm(S) for each value of x for which one of the ai equals b. For these
values, we modify our representation in one of two ways. If it happens that
ai = b and ai−1 = c ≤ b − 3, then in our representation of x we instead set
ai−1 = c+1 and ai = b−1. Or, if it happens that ai = b and ai+1 = c ≥ b+3,
then we change our representation of x by setting ai+1 = c−1 and ai = b+1.
If either of these conditions occurs, then this modified representation shows
that x ∈ Rm(S).

We now examine the situations in which these conditions both fail. First,
note that if ai−1 = b − 1, then ai = b must be the initial value of ai, which
is prohibited by our procedure. Similarly, if ai+1 = b + 1, then ai = b must
be the final value of ai, which is again prohibited. Hence there are three
possible situations in which our modifications fail to yield a representation
of x. First, we could have ai−1 = b − 2 and ai+1 = b + 2. Second, we could
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have ai−1 = b− 2 and i = m, so that there is no ai+1 term. Finally, we could
have ai+1 = b+ 2 and i = 1, so that ai−1 does not exist.

In the first case, we have m = n− 2, which we have already handled. In
the second case, we have

x = 0 + 1 + · · ·+ (b− 2) + b =
b2 − b+ 2

2
,

and x needs to be represented using exactly m = b elements of S. However,
using the b smallest elements of S yields a representation of x − 1. If we
attempt to increase the value of any of a1, . . . , ab−1, then all of the ai with
larger subscripts must also increase, making the sum of the ai greater than
x. Hence if we try to represent x, we must have

(a1, a2, . . . , ab−1) = (0, 1, . . . , b− 2).

But this forces us to set ab = b, which is not allowed. Hence this value of x
cannot be an element of Rb(S).

Finally, in the last case, we have m = n− 1− b and

x = b+ (b+ 2) + (b+ 3) + · · ·+ (n− 1)

=
(n− 1)n

2
− b2 + b+ 2

2
.

We need to show that x cannot be represented using exactly n−1−b elements
of S. If we try to use the n − 1 − b largest elements of S, we find that we
have represented

(b+ 1) + (b+ 2) + · · ·+ (n− 1) = x+ 1.

If we try to reduce any of a2, . . . , am, then any ai with a smaller subscript
must also be reduced, and the sum of the ai would become smaller than x.
Thus, any representation of x must have

(a2, . . . , am) = (b+ 2, . . . , n− 1).

However, this forces us to take a1 = b, which is not allowed. Therefore this
value of x cannot be an element of Rn−1−b(S).
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If m is not one of the exceptional values listed in the lemma, then our
modifications work, and Rm(S) is an interval. If m is an exceptional value
and the exceptional values are distinct, then for each of these values, Rm(S)
is exactly one element short of being an interval. Finally, we examine the
situations in which the exceptional values are not distinct. We already know
that R1(S) and Rn−2(S) are exactly one element away from being an interval,
and so the only case of interest is when b = n− 1− b. In this situation, the
value of x without a representation coming from m = b above is (1/2)(b2 −
b+ 2), while the exceptional value of x coming from the m = n− 1− b case
is (1/2)(3b2 + b− 2). These are equal if b = 1, but distinct if b ≥ 2. Hence,
when n = 2b+ 1 and b ≥ 2, the set Rb(S) = Rn−1−b(S) is two elements short
of being an interval.

Our second lemma essentially states that if we take the sumset of an
interval and a set which is almost an interval, then this sumset is an interval.

Lemma 2. a) Let S and T be sets, such that S = [s, s′], and T = [t, t′]\{b},
where s 6= s′, t 6= t′ and t ≤ b ≤ t′. Then we have S + T = [s+ t, s′ + t′].
b) If instead we have T = [t, t′] \ {b, c}, with t ≤ b, c ≤ t′ and c ≥ b+ 2, then
S + T = [s+ t, s′ + t′].

Proof. a) We clearly have S + T ⊆ [s+ t, s′ + t′]. If either b = t or b = t′,
then S and T are both intervals, and it is clear that S+T is also an interval.
Suppose then that t < b < t′. Consider the distinct numbers

s+ t s′ + (t+ 1)
(s+ 1) + t s′ + (t+ 2)
...

...
s′ + t s′ + t′

These numbers form the interval [s+ t, s′ + t′], and all of them except s′ + b
are clearly elements of S + T . However, we have

s′ + b = (s′ − 1) + (b+ 1).

We have s′ − 1 ∈ S by hypothesis, and b+ 1 ∈ T since b < t′. Hence we also
have s′ + b ∈ S + T , completing the proof.
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b) If either b ∈ {t, t′} or c ∈ {t, t′} then this follows from part a) of the
lemma. Otherwise, we proceed in the same way as above, and find that all
numbers except s′ + b and s′ + c are elements of S + T . As above, we write

s′ + b = (s′ − 1) + (b+ 1) and s′ + c = (s′ − 1) + (c+ 1).

Since c ≥ b+ 2, the numbers b+ 1 and c+ 1 are both elements of T , and so
the proof is complete.

3 The Proof of the Theorem

In this section, the expressions Si, R(Si), Rm(Si), si,j, and so on are defined
as in the introduction.

By definition, the first two terms of the sequence are n and n+ d. Since
the smallest possible sum of elements in the sequence is 2n + d, no number
from n + d + 1 to 2n + d − 1 can be represented as a sum of sequence ele-
ments. Thus these numbers must be the next terms of the sequence. Note
that, along with n+ d, these numbers are exactly the elements of S0.

Now we begin our induction by showing that the elements of S1 are the
next terms of the sequence. We first need to show that all of the numbers
between n + d and s1,0 = an − b can be expressed as sums of elements of
I ∪ S0. To do this, consider the sets Rm(S0) for 1 ≤ m ≤ n. Since we can
rewrite S0 = (n+ d) + [0, n− 1], it is not hard to see that we have

Rm(S0) = m(n+ d) + [0 + · · ·+ (m− 1), (n− 1) + · · ·+ (n−m)]

=

[
m(n+ d) +

(m− 1)m

2
,m(2n+ d− 1)− (m− 1)m

2

]
.

We will now show that if 2 ≤ m ≤ n− 3 then the sets Rm(S0) and Rm+1(S0)
are contiguous. This occurs if and only if

(m+ 1)(n+ d) +
m(m+ 1)

2
≤
(
m(2n+ d− 1)− (m− 1)m

2

)
+ 1.

That is, the sets are contiguous if and only if

m2 +m(1− n) + n+ d− 1 ≤ 0. (1)
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Write f(m) for the left-hand side of (1). If m = 2 or m = n − 3, then
f(m) = d + 5 − n, which is negative since d ≤ n − 8. Since f(m) is a
quadratic in m opening upwards, we immediately see that f(m) ≤ 0 for
2 ≤ m ≤ n − 3, as desired. Since these intervals are contiguous, we see
that we can find representations for all numbers from the smallest element of
R2(S0) to the largest element of Rn−2(S0). That is, we can represent every
element of the interval[

2n+ 2d+ 1,
3n2 + n(2d− 5)− 4d− 2

2

]
.

Now, comparing the upper endpoint of Rn−2(S0) and the lower endpoint
of Rn−1(S0), we see that these intervals are not contiguous, and we do not
yet have representations for the numbers

αj =
3n2 + n(2d− 5)− 4d− 2

2
+ j, 1 ≤ j ≤ d+ 1.

To represent these, first note that if j = 1, then we have the representation

α1 = n+ (n+ d) +
2n+d−2∑
i=n+d+2

i.

For the other values of j, note that we have

n+
∑
s∈S0

s 6=n+d

= αj + (2n+ d+ 1− j).

Thus we can represent αj if we can remove numbers summing to 2n+d+1−j
from the sum on the left. But this is clearly possible since 2n+ d+ 1− j lies
in the interval [2n, 2n + d − 1], which is a subinterval of S0 not containing
n + d. Combining these numbers with the numbers represented by Rm(S0),
2 ≤ m ≤ n− 1, we see that we have representations for every element of the
interval [

2n+ 2d+ 1,
3n2 + n(2d− 3)− 2d

2

]
.

Next, we can see that the interval above is contiguous with both of the
intervals

n+ S0 = [2n+ d, 3n+ d− 1]
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and

n+Rn−1(S0) =

[
3n2 + n(2d− 3)− 2d+ 2

2
,
3n2 + n(2d− 1)− 2d

2

]
.

Since we have not used the term n in a representation of any element of S0 or
Rn−1(S0), we can represent all the numbers in these two intervals. Combin-
ing all of our intervals and noting that the upper endpoint of n+Rn−1(S0) is
s1,0− 1, we see that all numbers from n+ d+ 1 to s1,0− 1 can be represented
by elements of I ∪ S0.

Now we need to show that the elements of S1 are the next elements of
the sequence. First, note that since any two elements of S1 differ by at most
n−1, no element of S1 could possibly be used in the representation of another
element of S1. Thus we may consider representations involving only elements
of I ∪ S0. One can compute that the sum of all the elements of I ∪ S0 is

n+
∑
s∈S0

s =
3n2 + n

2
+ nd.

Hence we can represent an element s1,j (where the numbers si,j are defined
as in the introduction) if and only if we can remove from this sum numbers
summing to the difference(

3n2 + n

2
+ nd

)
− s1,j = n+ d− 1− j.

However, since the second-smallest element of the sequence is n+ d, we can
only do this if we have n + d − 1 − j = n. That is, s1,j can be represented
if and only if j = d − 1. Since s1,d−1 6∈ S1, the elements of S1 cannot be
represented by previous elements, and hence must be the next terms of the
sequence.

Now we assume that the sequence begins with Pk = I ∪S0 ∪S1 ∪ · · · ∪Sk

for some k, and show that the next elements of the sequence must be the
elements of Sk+1. First, we need to show that every integer from n + d to
sk+1,0 − 1 can be represented by elements of Pk. By the definition of the
sequence, we know that all of the integers up to sk,n−1 = ank− b+n− 1 can
be represented, so we only need to worry about the others.
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Consider the sets Rm(Sk) for 1 ≤ m ≤ n− 1. If 1 ≤ m ≤ d− 1, then the
smallest element of Rm(Sk) is

mank −mb+ (0 + · · ·+ (m− 1)),

and if m ≥ d, then the smallest element is

mank −mb+ (0 + · · ·+m)− (d− 1).

Call this smallest element cm, so that we have

cm =

{
mank −mb+ (m−1)m

2
, if 1 ≤ m ≤ d− 1;

mank −mb+ m(m+1)
2
− d+ 1, if d ≤ m ≤ n− 1.

Similarly, if c′m represents the largest element of Rm(Sk), then we find that

c′m =

{
mank −mb+mn− m(m+1)

2
, if 1 ≤ m ≤ n− d;

mank −mb + (m + 1)n− m2+3m
2 − d, if n− d + 1 ≤ m ≤ n− 1.

Let Cm = [cm, c
′
m]. By Lemma 1, with b = d−1, we see that Rm(Sk) = Cm

unless m is one of the numbers 1, d − 1, n − d, or n − 2. From the proof of
Lemma 1, we almost have R1(Sk) = C1, except that R1(Sk) is missing the
element ank − b+ d− 1. Similarly, Rn−2(Sk) is missing only the element

(n− 2)ank − (n− 2)b+
(n− 1)n

2
− 2d+ 2

of Cn−2. In the same way, Rd−1(Sk) is missing only the element

(d− 1)ank − (d− 1)b+
d2 − 3d+ 4

2

and Rn−d(Sk) is missing only the element

(n− d)ank − (n− d)b+
(n− 1)n

2
− d2 − d+ 2

2
.

(If n = 2d−1 so that d−1 = n−d, and d ≥ 3, then this should be interpreted
as meaning that the set Rd−1(Sk) = Rn−d(Sk) is missing two elements.)
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We now show that the numbers which keep the sets Rm(Sk) from being
intervals do have representations. One can verify that we have

ank − b+ d− 1 =
k−1∑
i=0

∑
s∈Si

s

and

(n− 2)ank − (n− 2)b+
(n− 1)n

2
− 2d+ 2 =

k−1∑
i=0

∑
s∈Si

s+
n−1∑
j=0

j 6=d−2,d−1,d

sk,j.

(Again, the numbers si,j are defined as in the introduction.) To see that the
other two numbers have representations, we have

(d− 1)ank − (d− 1)b+
d2 − 3d+ 4

2
=

k−1∑
i=0

∑
s∈Si

s+
d−3∑
j=0

sk,j

and

(n− d)ank − (n− d)b+
(n− 1)n

2
− d2 − d+ 2

2
=

k−1∑
i=0

∑
s∈Si

s+
n−1∑

j=d+1

sk,j.

Hence, for 1 ≤ m ≤ n − 1, all elements in the set Cm are represented by
elements of Pk. Note that none of these representations use the term n of
the sequence.

Now, if x ∈ Cm, then by adding n to the representation of x, we obtain
a representation of n+ x. Hence all numbers in the intervals

n+ Cm = [n+ cm, n+ c′m]

can be represented by elements of Pk.

Next, the definition of the sequence tells us that we have [n+d, ank− b−
1] ⊆ R(Pk−1). If we write

Dm =
[
n+ d, ank − b− 1

]
+Rm(Sk),
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then Dm is an interval for each value of m. (If Rm(Sk) is an interval, then
this is clear. If it is one element short of being an interval, then this is true
by Lemma 2a. If Rm(Sk) is missing two elements, then we have n = 2d− 1,
with d ≥ 3, and the missing elements differ by (d − 2)(d + 1) ≥ 2. Then
Lemma 2b shows that Dm is an interval.) In fact, we have Dm = [dm, d

′
m],

where

dm =

{
mank −mb+ (m−1)m

2
+ n+ d, if 1 ≤ m ≤ d− 1;

mank −mb+ m(m+1)
2

+ n+ 1, if d ≤ m ≤ n− 1

and

d′m =

{
(m+1)ank−(m+1)b+mn−m(m+1)

2
−1, if 1 ≤ m ≤ n− d;

(m+1)ank−(m+1)b+(m+1)n−m2+3m
2
−d−1, if n− d + 1 ≤ m ≤ n− 1.

It is clear that every element of Dm is represented by elements of Pk.

Now, recalling that all integers up to ank − b+ n− 1 can be represented,
we prove that every number from ank− b+n to sk+1,0−1 can be represented
by elements of Pk. Note that ank − b + n is the smallest element of n + C1

and that sk+1,0 − 1 is the largest element of Dn−1. In order to show that all
these numbers have representations, we prove that the following pairs of sets
are contiguous:

• n+ C1 and D1

• D1 and C2

• C2 and n+ C2

• n+ C2 and D2

• Dm and Dm+1 for 2 ≤ m ≤ n− 4

• Dn−3 and Cn−2

• Cn−2 and n+ Cn−2

• n+ Cn−2 and Dn−2.
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It will turn out that the sets Dn−2 and Dn−1 are not contiguous, but we will
be able to show that the numbers separating these sets can be represented.

The sets n + C1 and D1 are contiguous if and only if we have d1 ≤
(n+ c′1) + 1. Thus we must verify that

ank − b+ n+ d ≤ (n+ ank − b+ n− 1) + 1,

i.e., that
ank − b+ n+ d ≤ ank − b+ 2n.

This is clearly true since d ≤ n− 1. Similarly, one can easily show that the
sets D1 and C2 are contiguous, as are the pair C2 and n + C2 and the pair
n+C2 and D2. (For these pairs, one must consider separately the cases d = 2
and d > 2, and use the fact that 2 ≤ d ≤ n− 8.)

Next, we want to show that for 2 ≤ m ≤ n − 4, the intervals Dm and
Dm+1 are contiguous. The condition for this to occur depends on the value
of m, but we can see that these sets are contiguous if and only if

m2 +m(1− n) + n+ d ≤ 0, if 2 ≤ m ≤ min{d− 2, n− d};
m2 +m(2− n) + 2d ≤ 0, if n− d+ 1 ≤ m ≤ d− 2;

m2 +m(2− n) + n+ 2 ≤ 0, if max{2, d− 1} ≤ m ≤ min{n− d, n− 4};

m2 +m(3− n) + d+ 2 ≤ 0, if max{d− 1, n− d + 1} ≤ m ≤ n− 4.

To show that the sets are contiguous in the first case, write f(m) = m2 +
m(1− n) + n+ d. We will show that f is negative at both endpoints. Since
f is a quadratic (in m) opening upwards, this will imply that f is negative
between the endpoints as well. First, we note that f(2) = 6 − n + d, which
is negative due to our assumption that d ≤ n− 8.

Suppose that min{d − 2, n − d} = d − 2. Then the condition on m
is that 2 ≤ m ≤ d − 2, which implies d ≥ 4. In this case, f(d − 2) =
d2−2d+2−n(d−3). However, since d ≥ 4, and n ≥ d+8, this expression is
at most−7d+26, which is negative for d ≥ 4. Suppose on the other hand that
min{d−2, n−d} = n−d. If we had d = 2, then d−2 = 0 would be the min-
imum. Thus we must have d ≥ 3 in this case. Now, f(n−d) = d2−n(d−2).
Noting as before that n ≥ d+ 8, this expression is at most −6d+ 16, which
is negative for all d ≥ 3. Hence f is negative at the right endpoint. As
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noted above, since f is negative at both endpoints, it must be negative at
all points in between as well. This completes the proof that Dm and Dm+1

are contiguous in the first case. We will not give the proof that the sets are
contiguous in the other three cases, but the arguments in those cases are
similar to this one. We note that the condition n ≥ d + 8 in the theorem is
required in the third case to ensure that n ≥ 10 when d = 2 and m is either
2 or n− 4.

For the sets Dn−3 and Cn−2, we must again break into cases based on the
value of d, and show that cn−2 ≤ d′n−3 + 1. If d ≤ 3, then after some algebra
we find that the sets are contiguous if and only if 5− d ≤ n, which is clearly
true. On the other hand, if d ≥ 4, then algebra shows that the sets are
contiguous if and only if n ≥ 2, which is also true. A similar argument shows
that the sets Cn−2 and n + Cn−2 are contiguous, and also the sets n + Cn−2

and Dn−2.

Remembering that we have representations for all the numbers in the set
Dn−1, we see that we have represented all of the numbers we need except for
the ones between Dn−2 and Dn−1. These are (regardless of the value of d)
exactly the numbers

βj = (n− 1)ank − (n− 1)b+
(n− 1)n

2
− d+ l, 1 ≤ l ≤ n+ d.

To represent these terms, if we add

k−1∑
i=0

∑
s∈Si

s = ank − b+ d− 1

to each of the elements of Rn−2(Sk), we find representations for all numbers
in the interval

(n− 1)ank − (n− 1)b+

[
(n− 2)(n− 1)

2
,
(n− 1)n

2

]
except for

(n− 1)ank − (n− 1)b+
(n− 1)n

2
− d+ 1.

Similarly, if we add

n+
k−1∑
i=0

∑
s∈Si

s = ank − b+ d− 1 + n
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to each of the elements of Rn−2(Sk), then we find representations of all num-
bers in the interval

(n− 1)ank − (n− 1)b+

[
(n− 2)(n− 1)

2
+ n,

(n− 1)n

2
+ n

]
except for

(n− 1)ank − (n− 1)b+
(n− 1)n

2
− d+ 1 + n.

The two exceptions are β1 and βn+1, which are exactly the numbers repre-
sented by the “intervals” Cn−1 and n+Cn−1. Hence they also have represen-
tations. Note that the above representations include all of the numbers that
we had been missing. Thus we see that every number less than the smallest
element of Sk+1 can be represented by the elements of Pk.

Now we need to show that the elements of Sk+1 are the next elements in
the sequence. As before, since any two elements of S differ by at most n− 1,
no element of Sk+1 could be used in a hypothetical representation of another
element of Sk+1. Now, since we have∑

s∈Pk

s = ank+1 − b+ d− 1 + n, (2)

we can represent the number sk+1,j = ank+1− b+ j if and only if we can find
a representation of the difference∑

s∈Pk

s− sk+1,j = d− 1 + n− j

to remove from the sum (2). However, since this difference is smaller than
n+ d, it is clear that it can be represented if and only if j = d− 1. However,
this is exactly the term which is excluded from the set Sk+1. Hence we see
that the numbers sk+1,j with j 6= d − 1 cannot be represented by previous
terms of the sequence, while the number sk+1,d−1 can be represented. Hence
the elements of Sk+1 must be the next terms of the sequence. This completes
the induction, and hence also the proof of the theorem.

We close this section with a few remarks on the condition n ≥ d + 8.
We believe that the theorem holds whenever n > d, and that this should be
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provable with a more refined analysis. We first use a hypothesis of this type
immediately after equation (1), where we needed to have n ≥ d+ 5 to show
that the sets R2(S0) and R3(S0) (and also the pair Rn−3(S0) and Rn−2(S0))
are contiguous. If n < d+ 5, then there will be gaps between these intervals,
and we would need to find explicit representations for the numbers in these
gaps.

Already needing to have n ≥ d + 5, at this point we simply looked for a
condition of the form n ≥ d + k, with k a constant, which would guarantee
that all of the other necessary pairs of intervals would be contiguous. Some
condition is needed in the case of C2 and n + C2, of n + C2 and D2, and
of Dm and Dm+1. Moreover, to show that D2 and D3 are contiguous when
d = 2, we needed to have n ≥ 10, which led to the n ≥ d+ 8 condition.

However, one usually needs significantly less than this. For example, one
can show that the intervals C2 and n + C2 are contiguous unless we have
n = 3 and d = 2, and the same is true for n + C2 and D2. It may even be
that there are a finite number of triples (n, d,m) for which Dm and Dm+1 are
not contiguous, and that these triples could all be treated individually.
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